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1. 

Ground Vibration Tests (GVTs) play an important role in the development of
launch vehicles by providing the experimental vibration information for the
assembled structure. This information is important for validating many studies
that predict the free vibration characteristics and whose results are used for the
design of control system, apart from the assessment of overall structural dynamic
response of the structure. Accuracy of the GVT depends on many factors such as
correct translation of the design into the hardware form, accurate instrumentation
and testing procedure. In view of the fact that the launch vehicle is a free structure
during flight, its simulation as a free structure during the ground vibration test is
also an important issue that needs considerable attention. In general, the ground
tests [1, 2] on flight structures suffer from the basic handicap that these structures
need to be supported in some way for the test, while providing as close to the
free–free elastic boundary condition as possible [3]. These two conflicting
requirements have led to the most universally acceptable configuration for the
launch vehicle ground test in which the structure is supported on two points,
corresponding to the nodal points of the fundamental mode of vibration. It is
found that such an arrangement provides a reasonable estimate of the fundamental
mode while the second and higher modes are only approximately known. Further,
the two point support needs to be designed very carefully so that its influence on
the higher mode is kept to a minimum, while adequately supporting a massive
launch vehicle structure, and this leads to the standard test configuration in which
a combination of stiff linear springs and soft rotational springs are used. Recently,
the author has investigated the two point support mechanism for the ground test
from the point of view of understanding the sensitivity of the vibration solution
to the support parameters, e.g., location and its stiffness [4].

This study has demonstrated that the requirement of a very stiff linear and a
soft rotational spring at nodal points makes the vibration results very sensitive to
a shift in the support point. Further, a stiff linear spring at the first mode nodal
points interferes significantly with the higher modes and provides erroneous
estimates of their frequencies and mode shapes. In recent times, increased
flexibility of the launch vehicle structure has made the higher modes also important
from many considerations and there is a strong need to evolve a different ground
vibration test procedure that is capable of providing reasonably accurate results
for at least first three free–free vibration modes of the launch vehicle structure.

0022–460X/98/390739+09 $30.00/0 7 1998 Academic Press



Support
system

Ring
support

sg

sg/L0    0.05<

c.g.

(b)

Kr

(a)

c.g.

Z,W

X

Kl

L0

   740

The present study proposes to examine the concept of a single point clamping
support for carrying out the ground vibration test on launch vehicles with a view
to predicting the corresponding correct in-flight free–free modes.

The proposed procedure is of an empirical nature wherein the vibation results,
obtained from tests conducted with structure clamped at its centre of gravity (i.e.,
c.g.), are processed using analytical predictions to provide the corresponding
free–free results. It may be mentioned here that, although theoretically any point
on the structure can be used as the clamping point for the test, the c.g. has the
basic advantages of static mass balance which makes the support design easier and
less massive. Further, during the flight the resultant of inertia forces acts through
the centre of gravity, rendering it a pseudo reaction point and the deformation of
two branches from the c.g. matches fairly closely with the actual free–free mode
shape of the launch vehicle. Finally, it is found that for a large class of launch
vehicles, the c.g. is generally close to either zero slope point (odd numbered modes)
or zero displacement point (even numbered modes) and a suitable choice of
support point stiffness can lead to a viable support configuration for the vibration
test. In view of the above, the present study examines the applicability of single
point support in the GVT of launch vehicles, for predicting accurately the free–free
frequencies and mode shapes.

2.    

Figure 1(a) shows the geometry of a general launch vehicle supported with a
combination of a stiff linear and a soft rotational spring at its c.g.. Such a support
can be realized by supporting the vehicle on two vertical beams kept very close
to each other (see Figure 1(b)). In this case, the high axial stiffness of support
beams provides a near zero displacement at the support point. However, the
bending stiffness of the beam is much smaller in comparison and provides a
marginal rotational restraint. In view of the fact that all roughly antisymmetric
modes (even numbered) have large modal rotations around the c.g., it makes sense
to use a softer rotational spring for beter prediction capability. In addition, all odd
numbered modes have nearly zero modal slope around the c.g. and therefore, the
presence of a small rotational restraint would not make much difference to the

Figure 1. Geometry and coordinate system of a spcae vehicle supported as its c.g..
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modal prediction accuracy of these modes. The harmonic transverse vibration of
stepped slender beams can be adequately described, using elementary beam theory,
by the following set of differential equations [4],

(14wi /1x̄4
i )+ g4

i wi =0, (1)

where, i (=1–N) is the constant property beam segment identifier, wi is the
transverse deformation of the ith beam segment, x̄i (=xi /L0) is the span
co-ordinate in the ith segment and g4

i (=[(rA)iv
2L4

0 /(EI)i ]) is the dimensionless
frequency parameter for the ith segment. A new frequency parameter for the
complete launch vehicle can be defined as,

l4 = rA0v
2L4

0 /EI0, (2)

where, rA0, L0 and EI0 are reference values. General solution of equation (1) is,

wi =Ai cosh gix̄i +Bi sinh gix̄i +Ci cos gix̄i +Di sin gix̄i , (3)

where Ai , Bi , Ci and Di are arbitrary constants of integration. The following
equations specify the continuity conditions between the beam segments, excepting
the clamp point.

wi (L� i )−wj (0)=w'i (L� i )−w'j (0)=0,

w0i (L� i )−w0j (0)=w1i (L� i )−w1j (0)=0. (4, 5)

At the clamp point, shear force and bending moment continuity is specified as,

w0i (L� i )−w0j (0)−K� rw'j (0)=w1i (L� i )−w1i (0)−K� 1wj (0)=0, (6)

where K� r (=KrL0/EI0) and K� 1(=K1L3
0 /EI0) are rotational and linear spring

constants at support point and index j is i+1. Finally, four free–free conditions
on the two end points are,

w01 (0)=w11 (0)=w0N (L�N )=W1N (L�N )=0. (9)

The solution for zeros of the characteristic determinant of size 4N×4N gives
values of l in the present case. There is one branch of the launch vehicle each on
either side of the support point, which vibrates at the single frequency parameter
l. This frequency is different from the actual free–free frequency and is used for
making predictions of the corresponding free–free frequencies.

3.       

Uniform beams are the most common modelling approximations to be
employed while dealing with various issues of launch vehicle structural dynamics.
In the present case a uniform unit beam (i.e., EI0 =1·0, ra0 =1·0 and L0 =1·0)
is assumed for the study of single point supported launch vehicles. The support
configuration is such that its linear spring stiffness ratio K� 1 is kept constant at
1·0×108 and the rotational spring stiffness ratio K� r is chosen steps of 0·1, 0·2, 0·5
and 1·0.

Table 1(a) presents the results for the frequency parameter l for the above four
cases, in addition to the free–free case, for the first six vibration modes and it is
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T 1

(a) Frequencies of the uniform unity vehicle
Case

ZXXXXXXXXXXXXXXCXXXXXXXXXXXXXXV
K� 1 0·0 1·0×108 1·0×108 1·0×108 1·0×108

Mode K� r 0·0 0·1 0·2 0·5 1·0

1 4·730 3·750 3·750 3·750 3·750
2 7·853 7·847 7·841 7·823 7·791
3 10·99 9·388 9·388 9·388 9·388
4 14·14 14·13 14·13 14·12 14·10
5 17·28 15·71 15·71 15·71 15·71
6 20·42 20·42 20·41 20·41 20·40

(b) Frequencies of normalized generic space vehicle
Case

ZXXXXXXXXXXXXXXCXXXXXXXXXXXXXXV
K� 1 0·0 1·0×108 1·0×108 1·0×108 1·0×108

Mode K� r 0·0 1·0 2·0 5·0 10·0

1 4·98 4·28 4·27 4·26 4·24
2 7·95 7·38 7·37 7·37 7·35
3 10·84 10·82 10·81 10·80 10·76
4 13·60 12·48 12·48 12·48 12·47
5 17·41 16·76 16·76 16·76 16·73
6 20·44 20·18 20·18 20·17 20·16

found that there is a clear distinction between the symmetric (i.e., odd numbered)
modes and the antisymmetric (even numbered) modes. It is seen that the symmetric
modes are not influenced by a change in the support rotational restraint while the
antisymmetric modes are influenced marginally, only by the rotational restraint.
This is because all symmetric modes have zero slope at the support point while
all antisymmetric modes have zero deformation at the support point, rendering
the supported mode shapes as functions of only one parameter (i.e., either K� 1 or
K� r ). Table 1(a) shows that the symmetric frequencies of the supported
configuration are much lower than the corresponding free–free values in
comparison to the antisymmetric frequencies and this fact is brought out more
clearly in Figures 2(a)–2(f), which present this comparison of mode shapes for the
first six vibration modes. It is clearly seen that mode shape changes for the
symmetric frequencies are much more significant than those for the antisymmetric
frequencies. Interestingly, the region of modal mismatch for the supported beam
in relation to the free–free beam is a function of the mode number and its width
becomes smaller for higher modes, leading to a smaller percentage reduction in
the frequencies for the higher symmetric modes and the difference between the
free–free and the supported symmetric mode shape can be described adequately
with the help of a simple sine function,

fn (1)= (pf − ps ) sin {(n+1)p1/2L0}, (12)
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where, L0 is the length of the beam, n is the mode number, pf and ps are the modal
deformations at beam midpoint for the free–free and the supported case and 1 is
the axial variable that varies only from 0–{2L0/(n+1)}. A small part of the modal
difference, outside the above range, is ignored by this function assuming it to be
insignificant.

Figures 2(a), 2(c) and 2(e) show that both free–free and supported mode shapes
have the same modal mass value and therefore, a reduction in the modal stiffness
is directly responsible for the reduction in the frequency parameter (Table 1(a)).
Hence, it is possible to arrive at the estimate of the loss in the modal stiffness for
the supported beam, using the above functional form for fn (1) as [5],

DKn =g EI(1)fn (1)fn (1)2 dl, (13)

Figure 2. Normalized mode shapes of a uniform unity space vehicle for (1) free–free case, (2–5)
supported case with K� 1 =1×108 and K� r =0·1, 0·2, 0·5 and 1·0 respectively. (a)–(f); modes 1–6.
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where DKn is the stiffness loss in the nth mode and EI(1) is the bending rigidity
distribution. In the present case, the above parameter is obtained as

DKn =4p4(pf − ps )2/(n+1). (14)

The expression for the predicted free–free frequency can now be obtained from
the supported frequency for the symmetric vibration modes as,

lnf = lns [1+DKn /(l4
nsmn )]1/4, (15)

where lnf is the nth predicted frequency parameter, lns is the nth measured
frequency parameter and mn is the modal mass for the nth vibration mode. Figures
2(a), 2(c) and 2(e) show that the difference (pf − ps ) for the first three symmetric
modes is nearly same with an average value of the order of 0·63, while the modal
mass mn is 0·25 for all the three symmetric modes. Therefore, the expression for
lnf , given in equation (15), can be further simplified as,

lnf = lns [1+623·42/{l4
ns (n+1)}]1/4, n=1, 3, 5, . . . . (16)

The first three predicted symmetric vibration modes frequency parameter, l, for
the free–free conditions, have been calculated from the above relation as 4·75,
10·86 and 17·45 in comparison to the exact values which are 4·73, 10·99 and 17·28
(see Table 1(a)). This represents a maximum difference of about 1·2% which can
be considered to be acceptable. The free–free mode shape can also be accurately
predicted by superposing the difference function f(1) onto the supported mode
shape.

With regard to the anti-symmetric (i.e., even numbered) modes, it is seen from
figures 2(b), (d) and (f) that the mode shapes are not altered at all even when the
rotational parameter varies from 0–1·0. While the second mode frequency is
marginally influenced by the variation in the rotational restraint, the fourth and
sixth mode frequencies are practically unaffected. This indicates that a simple
algebraic expression of the following form is capable of predicting the
antisymmetric mode frequencies, for moderate values of the rotational restraint.

lnf = lns [1+0·122(K� r /n2)]1/4, n=2, 4, 6, . . . . (17)

The fit constant of 0·122 in the obove expression is obtained as an arithmetic
average from the three anti-symmetric modes and to determine the adequacy of
this expression, the second free–free mode frequency is calculated from the
supported case with K� r =0·5 and the value is obtained as 7·853 which is the exact
result. Thus, the study for a uniform unity space vehicle has clearly brought out
the fact that accurate predictions for the frequencies and mode shapes are possible
for the first six free–free vibration modes, from the results obtained from a single
point supported configuration.

4.       

Space vehicle structures are such that they are stiffer and heavier at the root and
more flexible and ligher near the tip. Further, it is generally seen that while
individual magnitudes may vary singificantly for different launch vehicles, the
normalized variation of the stiffness and mass in the core vehicle is generally very
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Figure 3. Normalized structural configuration in the form of (a) bending rigidity and (b) mass
distributions for a generic space vehicle core structure.

similar to each other and it is possible to consider normalized space vehicle to be
fairly generic. In the present case, the normalized launch vehicle structure
described in reference [4] is used, whose summary is given in Figure 3. In this case
also, the support configuration at the c.g. (at a normalized distance of 0·348 from
the root ) is taken as a combination of a stiff linear spring (K� 1 =1×108) and a
set of soft rotational springs (K� r =1·0, 2·0, 5·0 and 10·0), with the reference values
for frequency normalization same as those for the uniform unity space vehicle. The
ratio of the largest rotational spring constant and the maximum normalized
bending rigidity is kept around unity, similar to the unity space vehicle. Table 1(b)
presents the frequency parameter for the first six modes of the normalized generic
launch vehicle and it is seen that the overall trends are similar to the ones observed
for the uniform unity space vehicle. However, there are notable difference in the
behaviour inasmuch as that all the six modes are influenced by the increase in the
rotational restraint, because the c.g. is no longer on the zero slope point for any
of the six modes. Similarly, the linear stiff support at the c.g. is not on either a
node or a zero slope point, and thus there are no well defined trends visible in the
results for the supported frequency in Table 1(b). A clearer picture emerges from
the Figures 4(a)–4(f) which present the mode shapes of all the six vibration modes
and it is found that, in general, the effect of support point on the frequency
parameter l, increases with increase in the normalized modal distance between the
support point and the nearest nodal point (sn ).

However, the influence of sn also varies with the mode number, while the
generalized mass for the supported case (mn ) is different for different modes in such
a way that it appears to be directly affecting the supported frequency. In the present
case it is assumed that both sn and mn are influenced only by the location of the
linear stiff spring and therefore sn takes values as 0·149, 0·113, 0·007, 0·069, 0·034
and 0·017 and mn takes values as 0·068, 0·025, 0·031, 0·045, 0·038 and 0·049, for
the first six modes. These values are considered to be applicable also to the case
when K� r is not zero. It is now possible to arrive at a simple expression for the
free–free frequency parameter lnf , using the modal parameters sn and mn as follows.

lnf = lnsg(K� r )[1+100{sn mn}]1/4, n=1, 2, 3, . . . . (18)
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The general expression is of the same form as that for the uniform unit space
vehicle, with the difference that the same expression is valid for all the six modes.
However, it is noted that the results for all the modes are now a function of the
rotational restraint K� r and this dependence is denoted by the function g(K� r ) as
follows.

g(Kr )=1+0·009{Kr /(nEIm )}, n=1, 2, 3, . . . , (19)

where EIm is the maximum value of the normalized EI(x) distribution for the core
vehicle. The fit constants 100 and 0·009 used in expressions (18) and (19) are
arrived at by minimizing the least squares error across the different modes. Values
of lnf , obtained for the case with K� r =2·0 from above relations, are 5·09, 7·86,
10·89, 13·38, 17·31 and 20·63 while corresponding exact values are 4·98 7·95, 10·84,
13·60, 17·41 and 20·44. The maximum error in lnf prediction is found to be of the
order of 2·2%, indicating acceptability of expressions (18) and (19). With regard
to the prediction of the mode shape, it is seen from Figures 4(a–f) that it is not

Figure 4. Normalized mode shapes of a normalized generic space vehicle for (1) free–free case
and (2–5) supported case with K� 1 =1×108 and K� r =1·0, 2·0, 5·0 and 10·0 respectively. (a)–(f );
modes 1–6.
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possible to define general functional forms. However, it can be seen that if the
supported mode shape is shifted vertically, as a rigid body around the tip, by an
amount (sn /n, n=1, 2, 3, . . . ), it is possible to arrive at a fairly good estimate for
up to four free–free modes. The supported fifth and sixth modes require a more
complex transformation to correctly predict the corresponding free–free mode
shape.

5. 

In this study, the problem of accurate free–free mode prediction from a single
point ground vibration test results for a space vehicle structure has been
investigated. Elementary beam theory governing equations has been used to solve
the problem of launch vehicle structure as a stepped beam. The vehicle is supported
on its c.g. with the help of a combination of stiff linear spring and soft rotational
spring, and exact beam function solution is extracted for two normalized vehicle
cases. Firstly, a uniform unit beam is considered and the results show a clear
distinction between the even and the odd numbered modes, for which simple and
accurate algebraic expressions have been developed for predicting the free–free
frequencies and mode shapes from a supported configuration. Next, a normalized
generic space vehicle core structure was analyzed in the supported form and it has
been found that there is no clear cut distinction between even and odd numbered
modes. In this case also, simple and accurate expressions are derived for the
corresponding free–free frequencies which depend on the modal mass, rotational
restraint and the minimum modal separation between the free–free node location
and the vehicle c.g..Mode shapes for the first fourmodes can be adequately obtained
by simple rigid body transformations. The study brings into focus, the potential for
carrying out the ground tests on launch vehicles in more realistic and achievable
support configurations and still being in a position to predict the first six free–free
vibration frequencies and mode shapes fairly accurately.
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